由于极客大挑战有很多签到难度的题,这里只选取了我认为有学习意义的题目

PolyRSA

题面:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import gmpy2
from Crypto.Util.number import *
flag = b"SYC{Al3XEI_FAKE_FLAG}"
p,q = [getPrime(2048) for _ in "__"]
e1,e2 = [getPrime(17) for _ in "__"]
e = 65537
n = p*q
c1 = gmpy2.powmod(2*p + 3*q,e1,n)
c2 = gmpy2.powmod(5*p + 7*q,e2,n)
c = gmpy2.powmod(bytes_to_long(flag),e,n)
print("e1=",e1)
print("e2=",e2)
print("c1=",c1)
print("c2=",c2)
print("c=",c)
print("n=",n)

#e1= 113717
#e2= 80737
#c1= 97528398828294138945371018405777243725957112272614466238005409057342884425132214761228537249844134865481148636534134025535106624840957740753950100180978607132333109806554009969378392835952544552269685553539656827070349532458156758965322477969141073720173165958341043159560928836304172136610929023123638981560836183245954461041167802574206323129671965436040047358250847178930436773249800969192016749684095882580749559014647942135761757750292281205876241566597813517452803933496218995755905344070203047797893640399372627351254542342772576533524820435965479881620338366838326652599102311019884528903481310690767832417584600334987458835108576322111553947045733143836419313427495888019352323209000292825566986863770366023326755116931788018138432898323148059980463407567431417724940484236335082696026821105627826117901730695680967455710434307270501190258033004471156993017301443803372029004817834317756597444195146024630164820841200575179112295902020141040090350486764038633257871003899386340004440642516190842086462237559715130631205046041819931656962904630367121414263911179041905140516402771368603623318492074423223885367923228718341206283572152570049573607906130786276734660847733952210105659707746969830132429975090175091281363770357
#c2= 353128571201645377052005694809874806643786163076931670184196149901625274899734977100920488129375537186771931435883114557320913415191396857882995726660784707377672210953334914418470453787964899846194872721616628198368241044602144880543115393715025896206210152190007408112767478800650578941849344868081146624444817544806046188600685873402369145450593575618922226415069043442295774369567389939040265656574664538667552522329712111984168798829635080641332045614585247317991581514218486004191829362787750803153463482021229058714990823658655863245025037102127138472397462755776598314247771125981017814912049441827643898478473451005083533693951329544115861795587564408860828213753948427321483082041546722974666875065831843384005041800692983406353922680299538080900818930589336142421748023025830846906503542594380663429947801329079870530727382679634952272644949425079242992486832995962516376820051495641486546631849426876810933393153871774796182078367277299340503872124124714036499367887886486264658590613431293656417255355575602576047502506125375605713228912611320198066713358654181533335650785578352716562937038768171269136647529849805172492594142026261051266577821582011917001752590659862613307646536049830151262848916867223615064832279222
#c= 375617816311787295279632219241669262704366237192565344884527300748210925539528834207344757670998995567820735715933908541800125317082581328287816628816752542104514363629022246620070560324071543077301256917337165566677142545053272381990573611757629429857842709092285442319141751484248315990593292618113678910350875156232952525787082482638460259354559904243062546518553607882194808191571131590524874275187750985821420412987586148770397073003186510357920710387377990379862185266175190503647626248057084923516190642292152259727446111686043531725993433395002330208067534104745851308178560234372373476331387737629284961288204368572750848248186692623500372605736825205759172773503283282321274793846281079650686871355211691681512637459986684769598186821524093789286661348936784712071312135814683041839882338235290487868969391040389837253093468883093296547473466050960563347060307256735803099039921213839491129726807647623542881247210251994139130146519265086673883077644185971830004165931626986486648581644383717994174627681147696341976767364316172091139507445131410662391699728189797082878876950386933926807186382619331901457205957462337191923354433435013338037399565519987793880572723211669459895193009710035003369626116024630678400746946356
#n= 728002565949733279371529990942440022467681592757835980552797682116929657292509059813629423038094227544032071413317330087468458736175902373398210691802243764786251764982802000867437756347830992118278032311046807282193498960587170291978547754942295932606784354258945168927044376692224049202979158068158842475322825884209352566494900083765571037783472505580851500043517614314755340168507097558967372661966013776090657685241689631615245294004694287660685274079979318342939473469143729494106686592347327776078649315612768988028622890242005700892937828732613800620455225438339852445425046832904615827786856105112781009995862999853122308496903885748394541643702103368974605177097553007573113536089894913967154637055293769061726082740854619536748297829779639633209710676774371525146758917646731487495135734759201537358734170552231657257498090553682791418003138924472103077035355223367678622115314235119493397080290540006942708439607767313672671274857069053688258983103863067394473084183472609906612056828326916114024662795812611685559034285371151973580240723680736227737324052391721149957542711415812665358477474058103338801398214688403784213100455466705770532894531602252798634923125974783427678469124261634518543957766622712661056594132089

分析:

题目提供了:
$$
c_1\ =\ (2p+3q)^{e_1}\ mod\ n\
c_2\ =\ (5p+7q)^{e_2}\ mod\ n
$$
我们需要借助c1和c2解出p,q

(最后解出的时候才意识到Poly是指多项式的意思)

下面进行求解:

  • 二项式展开

$$
c_1\ =\ (2p)^{e_1}+(3q)^{e_1}\ \ (mod\ n)\
c_2\ =\ (5p)^{e_2}+(7q)^{e_2}\ \ (mod\ n)\
$$

  • 两边同幂另一个指数
    $$
    c_1^{e_2}\ =\ (2p)^{e_1e_2}+(3q)^{e_1e_2}\ \ (mod\ n)\
    c_2^{e_1}\ =\ (5p)^{e_1e_2}+(7q)^{e_1e_2}\ \ (mod\ n)\
    $$

  • 消元
    $$
    5^{e_1e_2}c_1^{e_2}\ =\ (10p)^{e_1e_2}+(15q)^{e_1e_2}\ \ (mod\ n)\
    2^{e_1e_2}c_2^{e_1}\ =\ (10p)^{e_1e_2}+(14q)^{e_1e_2}\ \ (mod\ n)\
    $$

  • 做差即可
    $$
    5^{e_1e_2}c_1^{e_2}\ -\ 2^{e_1e_2}c_2^{e_1}\ =\ 0\ (mod\ q)
    $$
    所以说此式是q的倍数,直接gcd即可求出q

exp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from Crypto.Util.number import *
from gmpy2 import *
e1= 113717
e2= 80737
c1= 97528398828294138945371018405777243725957112272614466238005409057342884425132214761228537249844134865481148636534134025535106624840957740753950100180978607132333109806554009969378392835952544552269685553539656827070349532458156758965322477969141073720173165958341043159560928836304172136610929023123638981560836183245954461041167802574206323129671965436040047358250847178930436773249800969192016749684095882580749559014647942135761757750292281205876241566597813517452803933496218995755905344070203047797893640399372627351254542342772576533524820435965479881620338366838326652599102311019884528903481310690767832417584600334987458835108576322111553947045733143836419313427495888019352323209000292825566986863770366023326755116931788018138432898323148059980463407567431417724940484236335082696026821105627826117901730695680967455710434307270501190258033004471156993017301443803372029004817834317756597444195146024630164820841200575179112295902020141040090350486764038633257871003899386340004440642516190842086462237559715130631205046041819931656962904630367121414263911179041905140516402771368603623318492074423223885367923228718341206283572152570049573607906130786276734660847733952210105659707746969830132429975090175091281363770357
c2= 353128571201645377052005694809874806643786163076931670184196149901625274899734977100920488129375537186771931435883114557320913415191396857882995726660784707377672210953334914418470453787964899846194872721616628198368241044602144880543115393715025896206210152190007408112767478800650578941849344868081146624444817544806046188600685873402369145450593575618922226415069043442295774369567389939040265656574664538667552522329712111984168798829635080641332045614585247317991581514218486004191829362787750803153463482021229058714990823658655863245025037102127138472397462755776598314247771125981017814912049441827643898478473451005083533693951329544115861795587564408860828213753948427321483082041546722974666875065831843384005041800692983406353922680299538080900818930589336142421748023025830846906503542594380663429947801329079870530727382679634952272644949425079242992486832995962516376820051495641486546631849426876810933393153871774796182078367277299340503872124124714036499367887886486264658590613431293656417255355575602576047502506125375605713228912611320198066713358654181533335650785578352716562937038768171269136647529849805172492594142026261051266577821582011917001752590659862613307646536049830151262848916867223615064832279222
c= 375617816311787295279632219241669262704366237192565344884527300748210925539528834207344757670998995567820735715933908541800125317082581328287816628816752542104514363629022246620070560324071543077301256917337165566677142545053272381990573611757629429857842709092285442319141751484248315990593292618113678910350875156232952525787082482638460259354559904243062546518553607882194808191571131590524874275187750985821420412987586148770397073003186510357920710387377990379862185266175190503647626248057084923516190642292152259727446111686043531725993433395002330208067534104745851308178560234372373476331387737629284961288204368572750848248186692623500372605736825205759172773503283282321274793846281079650686871355211691681512637459986684769598186821524093789286661348936784712071312135814683041839882338235290487868969391040389837253093468883093296547473466050960563347060307256735803099039921213839491129726807647623542881247210251994139130146519265086673883077644185971830004165931626986486648581644383717994174627681147696341976767364316172091139507445131410662391699728189797082878876950386933926807186382619331901457205957462337191923354433435013338037399565519987793880572723211669459895193009710035003369626116024630678400746946356
n= 728002565949733279371529990942440022467681592757835980552797682116929657292509059813629423038094227544032071413317330087468458736175902373398210691802243764786251764982802000867437756347830992118278032311046807282193498960587170291978547754942295932606784354258945168927044376692224049202979158068158842475322825884209352566494900083765571037783472505580851500043517614314755340168507097558967372661966013776090657685241689631615245294004694287660685274079979318342939473469143729494106686592347327776078649315612768988028622890242005700892937828732613800620455225438339852445425046832904615827786856105112781009995862999853122308496903885748394541643702103368974605177097553007573113536089894913967154637055293769061726082740854619536748297829779639633209710676774371525146758917646731487495135734759201537358734170552231657257498090553682791418003138924472103077035355223367678622115314235119493397080290540006942708439607767313672671274857069053688258983103863067394473084183472609906612056828326916114024662795812611685559034285371151973580240723680736227737324052391721149957542711415812665358477474058103338801398214688403784213100455466705770532894531602252798634923125974783427678469124261634518543957766622712661056594132089

q = gcd((pow(c1,e2,n) * pow(5,e1*e2,n) - pow(c2,e1,n) * pow(2,e1*e2,n)),n)
p = n // q
assert p*q == n
print(p*q == n)
phi = (p-1)*(q-1)
e=65537
d = invert(e,phi)
m = pow(c, d, n)
print(long_to_bytes(m))

EzComplex

题面:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#sage9.3
from Crypto.Util.number import *
flag = b'FAKE{Do_You_know_Complex_numbers}'
p = random_prime(1 << 384)
q = random_prime(1 << 384)
n = p * q
e = 0x10001
N = pow(p, 2) + pow(q, 2)
m = bytes_to_long(flag)
c = pow(m,e,n)


print(c)
print(N)

'''
122977267154486898127643454001467185956864368276013342450998567212966113302012584153291519651365278888605594000436279106907163024162771486315220072170917153855370362692990814276908399943293854077912175867886513964032241638851526276
973990451943921675425625260267293227445098713194663380695161260771362036776671793195525239267004528550439258233703798932349677698127549891815995206853756301593324349871567926792912475619794804691721625860861059975526781239293017498
'''

分析:

已知N如下:
$$
N\ =\ p^2+q^2
$$
结合题目中的Complex,说明应该把N放在复数域中分解,由以下公式可知:
$$
N\ =\ (p+qi)(p-qi)
$$
通过遍历所有可能的因子从而得到p和q

利用sage中的divisors()函数返回可能的除数,并把范围定在Zn,即高斯整数,

同时满足高斯整数的范数等于N

exp:

1
2
3
4
5
6
7
8
9
10
11
12
13
#sage
c=122977267154486898127643454001467185956864368276013342450998567212966113302012584153291519651365278888605594000436279106907163024162771486315220072170917153855370362692990814276908399943293854077912175867886513964032241638851526276
N=973990451943921675425625260267293227445098713194663380695161260771362036776671793195525239267004528550439258233703798932349677698127549891815995206853756301593324349871567926792912475619794804691721625860861059975526781239293017498

Zn = ZZ[i](N)
for d in divisors(Zn):
p, q = map(int, d)
if is_prime(p) and is_prime(q) and d.norm() == N:
print(p)
print(q)
break
#8732781022306464325787401448517171026218291389436971731700810979177651389459896422549428444142746055523338740248707
#29962125885196559918101088622575501736433575381042696980660846307183241725227137854663856022170515177120773072848343